Exploring Design Space of Parallel Realizations: MPEG-2
Decoder Case Study

Basant K. Dwivedi, Jan Hoogerbrugge*, Paul Stravers* and M. Balakrishnan
Indian Institute of Technology Delhi, New Delhi, india
{basant, mbala}@cse.iitd.ernet.in
*Philips Research, Eindhoven, The Netherlands
{jan.hoogerbrugge, paulus.stravers}@philips.com

ABSTRACT

Many applications lend them to parallelism at different lev-
els of granularity. We first identify the key issues involved
in creating a parallel model of an application. These are
done with a view to estimate performance and explore the
”parallel” design space to select a suitable design point. The
Sframework presented provides an opportunity to perform this
ezploration both in the target architecture independent and
target architecture dependent manner. An MPEG-2 decoder
model in YAPI has been presented which has more paral-
lelism and improved performance. This model has further
been mapped onto SpaceCAKE architecture to study its ar-
chitectural parameters. Detasled results obiained with YAPI
simulation (target architecture independent) and TSS simu-
lation (after pr P r binding) on MPEG-2 decoder
application establish the effectiveness of our approach.

Keywords

MPEG-2 Decoder, YAPI, Parallel realization, Process, Thread,

FIFO

1. INTRODUCTION

Recent advances in network and microprocessor technol-
ogy have made it possible to introduce a new set of appli-
cations and services. High Definition TV (HDTV), Broad-
cast Satellite Service, Video-conferencing, Interactive Stor-
age Media etc. are few typical examples. These applications
need huge amount of data processing both in video and au-
dio domain. The high data rates involved in the applications
make computation very time consuming.

Designers mainly follow. two architectural approaches for

signal processing systems, dedicated and programmable. Ded-

icated architectures target an algorithm or a set of algo-
rithms. These architectures fully exploit the computational
features of algorithm and VLSI implementations of dedi-
cated architectures are optimized for area, power and per-

formance. A good overview of architectural approaches for -

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on scrvers or to redistribute to lists,
requires prior specific permission and/or a fee. ’

CODES 01 Copenhagen Denmark :

Copyright ACM 2001 1-58113-364-2/01/04...$5.00

signal processing systems has been given in [1]. Though
dedicated architectures provide good performance, they lack
flexibility to further extend the algorithm set.

On the other hand the programmable approach offers a
number of advantages. Programmable solutions offer greater
flexibility, as the target algorithm set can further be ex-
tended by applying proper software modifications. Since
a large number of applications can run on the same hard-
ware, per application hardware cost is reduced. On the other
hand, as computational properties of algorithms are not fully
exploited, it requires that both the architecture and appli-
cation models be faster. Architecture can be made faster by
employing multiprocessing strategy. Hence a parallel model
of application running over a multiprocessor architecture of-
fers one of the potential solutions.

The computational resources of a multiprocessor architec-
ture can be exploited fully only when the application model
has sufficient parallelism. Parallelism present in signal pro-
cessing applications can be made explicit using models based
on Kahn process networks [2]. Several variants of this model
have been reported including [3] and [4]. The drawback of
models based on Kahn process network is that they cannot
model reactiveness. This limitation is overcome in control
flow models such as Statecharts, Esterel and Polis. Once a
parallel model of the application is built, significant speed
up can be achieved when application runs over a multipro-
cessor architecture.

The main objective of this work is to identify several mod-
eling issues involved in creating a parallel model using YAPI
[4], which can further be used as a starting point to expand
the application set and estimate the performance of other
application models. An MPEG-2 decoder has been modeled
with increased parallelism in the model and improved per- .
formance. This model is later used to study the architectural
parameters of SpaceCAKE architecture [5]. -

The remainder of this paper is organized as follows. In
Section 2 we introduce YAPI, which we used to model MPEG-
2 decoder. Section 3 discusses several modeling issues. Sec-
tion 4 discusses MPEG-2 decoder model in YAPI and de-

. scribes how performance is improved. Section 5 describes

92

the experimental environment. Section 6 presents results of
the experiments with conclusions in Section 7. In this paper
the terms process and thread are used interchangeably.

2. YAPI

YAPI (Y-Chart Application Programmer’s Interface) is
a C++ library with a set of rules which can be used to

model signal processing applications as process networks.
This process network is a variant of Kahn process network.

A process network is composed of a number of process
networks, processes and FIFOs. In a process network, a
process represents a computing station and a FIFO repre-
sents a communication channel. Since a process network can
further be part of another process network, an hierarchy of
process networks can be created. Figure 1 shows a simple
process network, where two processes A and B communicate
over FIFO F. . -

m—
Process Network

Figure 1: Process Network

Processes define the functionality of the application. A
process interacts with its environment through input and
output ports. A process can be in running state, dlocked
state or ready state. A process gets blocked when it tries to
read from an empty FIFO or it tries to write into a FIFO
which is full.

There are three primitives provided by YAPI for com-
munication over channels. Primitive read is used to read
from the channel, primitive write is used to write into the
channel and primitive select is used in non deterministic ap-
plications. Furthermore, muitiple tokens can be transferred
over the FIFO using vector communication mechanism of
YAPI, which is more efficient. An application model cre-
ated using YAPI is architecture independent and hence, the
application model can be mapped on any architecture.

3. MODELING ISSUES

A parallel model of application is quite different from its
sequential model. The state space of a parallel model is
quite large. Parallel models also impose overheads of con-
text switching, communication and synchronization. Fur-
ther, prediction of performance of such parallel application
is difficult, as execution speed is highly architecture depen-
dent [6]. In this section, several modeling issues and their
effect on performance have been discussed. The focus is at
coarse grain parallelism in the context of YAPL

Amount of Parallelism. The amount of parallelism present
in the application depends on application itself. Thorough
data dependency analysis of application is required to fully
extract the data and functional parallelism present in the
application. For example, in MPEG-2 decoder application,
several independent tasks such as variable length decoding,
motion compensation, IDCT etc. can be identified and data
parallelism present at slice, macroblock or block level can
be exploited by providing more instances of these tasks. It
is very likely that an application model, having more par-
allelism, will improve performance, provided total number
of tokens communicated among processes do not increase
much. .

93

Unidirectional Communication. An application model
where processes are handshaking with each other (request &
grant of tokens between two processes), may lead to a dead-
lock. Handshaking also increases number of tokens trans-
ferred and violates the streaming behavior, where data flows
in one direction.

An application model, which has unidirectional communi-
cation among processes, is likely to give better performance.
This improvement comes from two sources, reduction in
number of context switches and number of tokens being com-
municated. Since data flows only in forward direction in uni-
directional communication, it also reduces synchronization
overhead and debugging time.

Communication Overhead. In a multiprocessor environ-
ment, there is conflict for communication resources (Though
with lots of buses and other hardware it is possible to avoid
contention altogether, it is expensive). As the number of
processors increases in the architecture, communication be-
comes more expensive. So an application model, optimized
for reduced communication, will give better speed. This
can be achieved by carefully choosing token structure and
controlling the number of tokens transferred over communi-
cation channels.

Granularity of Operation. Granularity of operation sig-
nificantly affects structure of application model. Compilers
are there which are able to extract instruction level paral-
lelism at a very fine level of granularity. Here we mainly
concentrate on coarse grained parallelism.

In signal processing applications parallelizing at finer gran-
ularity may have the following effects:

e Data parallelism present at finer granularity can be
exploited.

o Communication primitives are called more frequently,
as less number of tokens are transferred during any
transfer. So communication workload increases.

o It is more likely that total amount of data transfer also
goes up. .

Hence, at finer granularity, data parallelism can be increased,
but it also increases communication workload. So perfor-
mance improves only when computation workload relatively
decreases.

Balanced Pipelines. In a process network, processes com-
municate with each other in a pipelined manner. The slow-
est process in the pipeline determines its throughput. If the
computation is not properly balanced among processes, it
will reduce effective parallelism present within the applica-
tion model.

Figure 2 shows two pipelines which converge at process
Sink. If the latency of lower path is more, because of fi-
nite space in FIFOs, processes in the upper path will get
blocked more often. This will increase the number of con-
text switches and reduce the effective parallelism in the ap-
plication. Hence, in such a situation, an application model
will perform better which has balanced pipelines.

Synchronization Overhead. In YAPI an application is
modeled as a process network. Processes communicate with

Figure 2: A process network demonstrating two

pipelines

each other over FIFOs by transferring tokens. Then it be-
comes important at what place a process sends or receives
tokens. Further, there is need for mechanisms using which
global events can be notified and actions can be started.
For example, arrival of new picture in MPEG-2 decoding is
a kind of global event. All the processes within MPEG-2
decoder model should be notified about this, so that they
can update picture properties required for correct decoding.
So, the application programmer has to take care of the fol-
lowing:

o Identification of the points at which, a token required
for synchronization should be sent.

e Mechanism of notifying processes about global events.
One solution is to employ broadeast mechanism, in
which case some special tokens are communicated to
all the relevant processes.

o Mechanism of communicating (sourcing or sinking) to-
kens with the processes repeating same operation (e.g.,
IDCT).

Multiple Instance of Processes. The process network in
Figure 3 has 'n’ instances of process P. In this process net-
work, throughput at this stage of process P should increase
roughly by a factor 'n’. However, this scheme increases syn-
chronization overhead. Now the process Source must adopt
some policy to distribute the tokens properly among pro-
cesses Pi and similar policy must be adopted by the process
Sink to collect tokens.

inpr [T) e
. J

-
tapn { .] outpa
L)

Figure 3: A process network demonstrating multiple
instance of process P

If 'n’ becomes large, processes Source and Sink may not
respond to demands of processes Pi quickly, which may fur-
ther lead to increase in context switching. So for a large
value of 'n’ performance improvement may get saturated.

Memory Usage. On chip memory speeds up system per-
formance, but it is limited in amount. This suggests memory
usage should be optimized. Increase in parallelism increases
number of processes and communication channels within the

94

application model. This further increases memory require-
ments. So there is a trade off between size of parallelism
and space requirements. Though this cannot be eliminated
fully, the problem can be reduced by fine tuning the sizes of
FIFOs after few experiments.

Scalability. Scalability of the model defines its capability
to grow. An application model is scalable if more data par-
allelism can be provided by just plugging more instances
of processes (e.g. by providing more IDCT processes in
MPEG-2 decoder application).

4. MPEG-2 DECODER MODEL

A number of parallel models of MPEG-2 decoder [7, 8]
in software have been studied [9, 10, 11, 12, 13, 14]. Focus
of [9] is on methodology. The focus in [10] and [11] is on
extracting parallelism at different levels of granularity (e.g.
GOP, slice, macroblock) and studying variation in perfor-
mance. Whereas, [12] explores the effectiveness of MAJC!
when a parallel MPEG-2 decoder runs on it. In this paper,
we further extend this kind of study.

Based on issues discussed in the previous section, we mod-
eled MPEG-2 decoder (Figure 4) in YAPI. There are three
levels of hierarchy in the model. At the top level, process
Tinput reads input video sequence, process Thdr extracts
header from the sequence, process TmemMan manages
frame memory, process Toutput outputs decoded frames
and process network TsliceDec extracts the slice header
and decodes the slices.

Figure 4: Process network MPEG-2 Decoder

The process network TsliceDec (Figure 5) gets slices
from the bit stream and decodes it. The process Tvld is for
variable length decoding. The process network T'mec pro-
vides motion compensation. Inverse quantization followed
by IDCT is provided by the process network Tiq.idct_add,
whereas the process TwriteMB writes decoded macroblocks

-into the frame memory. Processes at this level operate on

macroblocks.

The process network Tiq.idct_add (Figure 6) is com-
posed of three processes. The process Tisiq provides inverse
scan and inverse quantization. The process Tidct provides
IDCT operation and the process Tadd adds IDCT compo-
nent with prediction component.

!Microprocessor Architecture for JAVA Computing

Figure 6: Process network Tig.idct_add

The processes. TdecMV which decodes motion vectors
and Tpredict which provides predictions, make the process
network Tmc (Figure 7) and provide motion compensation.

Figure 7: Process network Tmc

The MPEG-2 decoder model described in Figure 4 ex-
tracts data parallelism present at slice and macroblock level
simultaneously. The model has flexibility to grow. More
instances of TsliceDec, Tigq-idct-add or Tidct can be pro-
vided to increase parallelism in the application. There is
no bidirectional communication except between TmemMan
and Toutput. This cannot be avoided because of limited
frame memory. All the FIFOs are resized to utilize FIFO
memory space more efficiently.

5. EXPERIMENTAL SETUP

The simulation setup is composed of 4 layers (Figure 8).
Uppermost layer is application. Application has been mod-
eled using primitives of YAPI. Since a thread is created cor-
responding to every process in application model, YAPI uses
thread scheduler to provide thread related services.

Thread scheduler is responsible for thread management
activities such as context switches, maintaining status of

95

threads etc. The bottom layer is architecture. Every CPU
within the architecture has its own thread scheduler. The
thread scheduler is like a small operating system which man-
ages the resources of the CPU.

Application

YAPI

Thread Scheduler

Architecture

Figure 8: Layered structure of experiment environ-
ment

We simulated MPEG-2 decoder application in two envi-
ronments. These are YAPI run time and TSS environments.
In the YAPI run time environment, the application runs on
a workstation and YAPI provides application workload in-
formation. We simulated MPEG-2 decoder application in
YAPI environment on Sun platform with SunOS 5.7.

The other environment is TSS2. Here we mapped MPEG-
2 decoder application onto TSS model of the SpaceCAKE
architecture [5]. The SpaceCAKE Architecture is an ho-
mogeneous multiprocessor architecture. The basic unit of
repetition is a tile. A tile consists of a heterogeneous mix of
memories, general purpose processors (like the MIPS 1900
or ARM), DSPs etc. In our study we used an early version
of the architecture, consisting of a single tile with a config-
urable number of low-end MIPS CPUs, which communicate
over a PI Bus. The architecture of these CPUs is very close
to PR1910 [15].

‘We compiled the application-model for MIPS and linked it
with YAPI library to generate executable of the application.
This finally runs on the TSS model of the SpaceCAKE archi-
tecture under the control of the thread scheduler. Thus, this
process describes the mapping of YAPI model of application
onto the TSS model of architecture.

6. EXPERIMENTAL RESULTS

‘We have taken a number of MPEG-2 decoder models. The
first model i8 named as old.model which has been introduced
in [9]. Rest of the models can be identified as mpeg_ijk.
Here ’i’ indicates number of process networks TsliceDec,
'’ indicates number of process network Tig_idet.add within
TsliceDec and ’k’ indicates number of processes Tidct within
Tigtdct_add. There are 15 processes within old_model. The
number of processes within model mpeg_ijk can be calculated
as follows:

Number of processes 4+ix(4+ix(2+EK) Q)

The input MPEG-2 video sequence is tennis.m2v (table ten-
nis sequence with 8 frames, frame size 576x704).

6.1 YAPI Level Simulation

YAPI run time environment is not a multiprocessor en-
vironment, as the application runs on a single processor.
However, it gives some important feedback about the appli-
cation. This feedback is in terms of two parameters, Num-
ber of contest switching which is the total number of thread

2TSS is a cycle accurate C language based simulation frame-
work used within Philips.

switching on the processor and Parallelism number which is
the average number of processes in the ready list of the pro-
cessor at any time. Table 1 shows these two parameters. It
can be seen that Number of context switching comes down by
increasing the value of ’i’ in models mpeg-ijk, but increases
when j goes from 2 to 4. This implies that it is quite possible
that after a certain point by providing more instances of pro-
cesses or process networks will increase Number of contest
switches even if Paralielism number increases.

Model Number of Parallelism

name context switching number
old_model 346763 3.87
mpeg-122 21786 7.81
mpeg.222 20506 13.58
mpeg_242 31826 22.89
mpeg 422 19919 23.87
mpeg_442 31965 39.66

Table 1: Number of context switching and Paral-
lelism number for various MPEG-2 decoder models

6.2 TSS Level Simulation

‘We have used three instances of architecture, with 2 CPUs,
4 CPUs and 8 CPUs. Various MPEG-2 decoder configura-

tions run on TSS model of SpaceCAKE architecture. We

present simulation results corresponding to total number of

cycles, CPI (cycles per instruction), bus wait cycles and to-

tal number of snooping requests. .

Figure 9 shows Number of cycles against number of CPUs
for various models. Total number of cycles for different con-
figurations have been normalized against total number of
cycles taken during simulation of old_model with 8 CPUs.
Except old_model, other models show decrease in number of
cycles with increasing number of processors in the architec-
ture. More than 100% improvement in speed can be seen
for mpeg_222 compared to old-model. However, the gain in
speed, while going from 4 CPUs to 8 CPUs, is less compared
to gain from 2 CPUs to 4 CPUs.

'°° N

* Normalzad nusber of cycies

g€ 8§ 8 8 3 8 8

2 3 4 [[) 7 8
Number of CPUs

Figure 9: Number of cycles vs Number of CPUs

The old_model contains quite a few processes handshak-
ing with each other. Though the old_model seems to offer
enough parallelism for at least 2 CPU configuration, commu-
nication is increased because of handshaking (bidirectional
communication). This is the reason why new models which
have handshaking only at one place offer significant perfor-
mance improvement. Further, in the new models, variation
in performance increases when there are more processors.

Hence, in this case having more processes in the application
model offers advantage.

CPI is the ratio of total number of cycles over total num-
ber of instructions, taken by the application to decode ten-
nis.m2v during TSS simulation. In Figure 10, except old_model
all other models show increase in CPI, which indicates de-
crease in total number of instructions relative to total num-
ber of cycles.

. s L 7 L
Number of CPUs.

Figure 10: CPI vs Number of CPUs

Figure 11 shows variation of bus_wait_cycles for different
configurations. In this plot bus_wait_cycles indicates the av-
erage number of cycles a CPU is blocked while a cache fill
request is in progress. Except old_model all ather mod-
els show the same kind of behavior and variation is not
very high. The curve is nearly a straight line. So increase
in bus_wait_cycles is almost 9 units per processor, whereas
old.model show slightly different behavior and increase in
bus_wait_cycles is 6.4 units per processor. The reason for
increase in bus_wait_cycles is that now there are more CPUs
to share the only communication resource (bus).

Number of CPUs

Figure 11: Bus wait cycles vs Number of CPUs

Figure 12 shows the total number of snooping requests
made by CPUs for cache coherence. The TSS model of the -
CPU uses MSI cache coherence protocol for cache coherence
among CPUs. It is clear from the plot that as the number
of CPUs is increased, required snooping requests also go
up. The curves are again nearly straight lines. Increase
in snooping request is approximately 3.83 units per CPU ~
for old-model and 1.1 units per CPU for others. Hence rela-
tive decrease, in number of snooping requests in new models
compared to old_model, is by a factor of 3.4, which indicates
there is relatively much less cache coherence activity com-
pared to old_model. :

In Figure 13 Parallelism number have been taken from
YAPI level simulations. It can be seen that variation in the

96

total number of cycles taken during the TSS simulations is
not large for a particular number of CPUs. This implies that
ideally total number of cycles taken during TSS simulations
should decrease as Parallelism number increases, but the
communication bottleneck prevents this.

4 s L]
Number of CPU3 In the tie

Figure 12: Number of bus
Number of CPUs

5 10 15 2 25 %0 33 “«
Paraliglism number

Figure 18: Number of cycles vs Parallelism

7. CONCLUSIONS

There are 2 number of factors which dn-ectly affect the
performance of an application model. Unidirectional com-
munication, balanced pipelines, granularity of operation are
a few typical examples. The model features such as bidirec-
tional communication, unbalanced pipelines, feedback loops
etc. could reduce the speed significantly and might lead to
deadlocks.

We found from experiments that as the number of pro-
cessors in the architecture increases, conflicts for commu-
‘nication resources increases. So after a certain number of
processors, increasing the number of CPUs does not im-
prove performance significantly. We also observed that for
our MPEG-2 decoder application, presence of 4 CPUs in
the tile gives performance which is good enough, as going
beyond 4 CPU does not improve performance significantly.
Further, adding more CPUs must be backed up with more
communication bandwidth. We also observed that for fixed
number of CPUs in the architecture, there is a limit beyond
which mcreasmg the number of processes in the application
model does not improve performance much.,

In the current implementation of MPEG-2 decoder model
we allowed only process Tinput to get access to video se-
quence directly. Rest of the processes get access using buffer-
ing mechanism. The model can further be improved by re-
ducing buffering and allowing more processes (particularly

[9)

97

variable length decoders) to have direct access to video se-
quence as proposed in [10]. On the other hand this scheme
is likely to increase the synchronization overhead.

8. REFERENCES

[1] Peter Pirsch and H. J. Stolberg. VLSI
implementations of image and video multimedia
processing systems. IEEE Trans. on Circusts and
Systems for Video Technology, 8(7):878-891,
November 1998.

[2] Gills Kahn. The semantics of a simple language for
parallel programming. In Proc. IFIP Congress 74.
North Holland Publishing Co, 1974.

[3] Edward A. Lee et al. Dataflow process networks. Proc.
of IEEE, 83(5):773-801, May 1995.

[4] E. A. de Kock et al. YAPI: application modeling for

signal processing systems. In Proc. 37th Design

Automation Conference (DAC’00), June 2000.

Paul Stravers and Jan Hoogerbrugge. Homogeneous

multiprocessing and the future of silicon design

paradigms. In Proc. International Symposium on

VLSI Technology, Systems, and Applications

(VLSI-TSA 2001), April 2001.

David B. Skillicorn and Domenico Talia. Models and

languages for parallel computation. ACM Computing

Surveys, 30(2):123-169, June 1998.

Joan L. Mitchell, William B. Pennebaker, Chad

E. Fogg and Didier J. LeGall. MPEG VIDEO

COMPRESSION STANDARD. Chapman & Hall,

New York, 1996.)

Information technology - Generic coding of moving

pictures and associated audio information: Video.

ISO/IEC 13818-2, 1996.

[9] Pieter van der Wolf et al. An mpeg-2 decoder case

study as a driver for a system level design

methodology. In Proc. CODESS’99, 1999.

E. Iwata and K. Olukotun. Exploiting coarse-grain

parallelism in the mpeg-2 algorithm. Technical Report

CSL-TR-98-771, Stanford University Computer

Systems Laboratory, September 1998.

Angelos Bilas et al. Real-time parallel mpeg-2

decoding in software. In Proc. 11th International

Parallel Processing Symposium (IPPS), April 1997.

MAJC Documentation. MPEG-2 Video

D pression on a Multi-p ing VLIW

Microprocessor.

http://www.sun.com/microelectronics/MAJC/.

H. Oehring et al. Mpeg-2 video decompression on

simultaneous multithreaded multimedia processors. In

Proc. Int. Conf. on Parallel Architectures and

Compilation Technigues (PACT '99), October 1999.

Brian C. Smith Ketan Patel and Lawrence A. Rowe.

Performance of a software mpeg video decoder. In

Proc. ACM Multimedia Conference, 1993.

[15) PR1910 User Manual Philips Semiconductors.

8l

[

=2

7

[8

2

(10

f11)

12

(14

